Simultaneous EEG-fMRI: evaluating the effect of the cabling configuration on the gradient artefact.
نویسندگان
چکیده
EEG recordings made in combined EEG-fMRI studies are corrupted by gradient artefacts (GAs) resulting from the interaction of the EEG system with the time-varying magnetic field gradients used in MRI. The dominant contribution to the GA arises from interaction with the leads of the EEG cap and the human head, but artefacts are also produced in the cables used to connect the EEG cap to the amplifier. The aim of this study is to measure the effects of the connecting cable configuration on the characteristics of the GA. We measured the GA produced on two different cable configurations (a ribbon cable and a cable consisting of wires that are twisted together to form a cylindrical bundle) by gradient pulses applied on three orthogonal axes and also characterized the effect of each cable configuration on the GA generated by a multi-slice echo planar imaging sequence, as employed in typical EEG-fMRI studies. The results demonstrate that the cabling that connects the EEG cap to the amplifier can make a significant contribution to the GA recorded during EEG-fMRI studies. In particular, we demonstrate that the GA generated by a ribbon cable is larger than that produced using a twisted cable arrangement and that changes in the GA resulting from variation in the cable position are also greater for the ribbon cable.
منابع مشابه
Non-Linear Filter for Gradient Artefact Correction during Simultaneous EEG-fMRI
Parallel to the breakthroughs on the usage of simultaneous EEG-fMRI in neurocognitive studies and research, the occurrence of artefacts in the EEG signal induced within the fMRI scanner constitutes one of the challenges to be overcome in order to broaden the range of applications of such a technique. It is the case of the gradient artefact, provoked by the variation of gradient magnetic fields....
متن کاملReducing the Gradient Artefact in Simultaneous EEG-fMRI by altering the Subject’s Axial Position
Large artefacts which compromise EEG data quality are generated when electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are carried out concurrently. The gradient artefact produced by the time-varying magnetic field gradients is the largest of these artefacts. Although average artefact correction (AAS) and related techniques can remove the majority of this artefact, t...
متن کاملReducing the gradient artefact in simultaneous EEG-fMRI by adjusting the subject's axial position
Large artefacts that compromise EEG data quality are generated when electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are carried out concurrently. The gradient artefact produced by the time-varying magnetic field gradients is the largest of these artefacts. Although average artefact correction (AAS) and related techniques can remove the majority of this artefact, th...
متن کاملSimultaneous EEG/fMRI Phantom Experiments with a Realistic Neuronal Signal
Introduction: Simultaneous EEG/fMRI is hampered by large artefacts produced in the EEG signal by: (i) rapid gradient switching during fMRI acquisition, (ii) the effects of pulsatile blood flow and (iii) subject movement, the latter two of which increase linearly with field strength. One of the most prevalent correction methods for the pulse and gradient artefacts is averaged artefact subtractio...
متن کاملReal-time rejection of gradient and pulse related artefact (GRA and PRA) from electroencephalographic signals recorded during functional magnetic resonance imaging (fMRI)
Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are two imaging techniques used to study the dynamical activity of the human brain. Although complementary, i.e. EEG has a high temporal resolution while fMRI provides precise volumic information, the simultaneous use of both techniques introduces large artefacts in the EEG recordings. These artefacts are consequences...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physics in medicine and biology
دوره 60 12 شماره
صفحات -
تاریخ انتشار 2015